On quantum shuffle and quantum affine algebras
نویسنده
چکیده
A construction of the quantum affine algebra Uq(ĝ) is given in two steps. We explain how to obtain the algebra from its positive Borel subalgebra Uq(b +), using a construction similar to Drinfeld’s quantum double. Then we show how the positive Borel subalgebra can be constructed with quantum shuffles.
منابع مشابه
Dual canonical bases, quantum shuffles and q-characters
Rosso and Green have shown how to embed the positive part Uq(n) of a quantum enveloping algebra Uq(g) in a quantum shuffle algebra. In this paper we study some properties of the image of the dual canonical basis B∗ of Uq(n) under this embedding Φ. This is motivated by the fact that when g is of type Ar, the elements of Φ(B∗) are q-analogues of irreducible characters of the affine Iwahori-Hecke ...
متن کاملReiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
Quantum Z-algebras and Representations of Quantum Affine Algebras
Generalizing our earlier work, we introduce the homogeneous quantum Z-algebras for all quantum affine algebras Uq(ĝ) of type one. With the new algebras we unite previously scattered realizations of quantum affine algebras in various cases. As a result we find a realization of Uq(F (1) 4 ). 0. Introduction In 1981 Lepowsky and Wilson introduced (principal) Z-algebras as a tool to construct expli...
متن کاملQuantum vertex C((t))-algebras and quantum affine algebras
We give a summary of the theory of (weak) quantum vertex C((t))algebras and the association of quantum affine algebras with (weak) quantum vertex C((t))-algebras.
متن کاملQuantum Toroidal Algebras and Their Representations
Quantum toroidal algebras (or double affine quantum algebras) are defined from quantum affine Kac-Moody algebras by using the Drinfeld quantum affinization process. They are quantum groups analogs of elliptic Cherednik algebras (elliptic double affine Hecke algebras) to whom they are related via Schur-Weyl duality. In this review paper, we give a glimpse on some aspects of their very rich repre...
متن کامل